
Finite Markov Mixture Model for Automatic Parameter
Tuning

Freddy Chong Tat Chua
School of Information Systems

Singapore Management University
freddy.chua.2009@smu.edu.sg

1. INTRODUCTION

1.1 Motivation
Combinatorial Optimization problems occur frequently as

a fundamental problem in operations research. The optimal
solution to many problems in operations research can be de-
rived from the optimal solution of basic combinatorial prob-
lems. Some examples of such problems include Traveling
Salesman Problem (TSP), Quadratic Assignment Problem
(QAP), and Job Shop Scheduling Problem (JSP). Unfortu-
nately, it has been theoretically proven that these combina-
torial problems are NP Complete and no known algorithm
exists that finds the solution in polynomial time. Existing
techniques exist to provide sub-optimal solutions in reason-
able amount of time. One such technique is the Iterated
Local Search (ILS) [10].

1.2 Iterated Local Search
The main purpose of Iterated Local Search (ILS) is to pro-

vide an intelligent principle of searching for a locally optimal
solution among the space of all solutions. There are several
basic principles for performing ILS,

1. Finding a good initial solution

2. Iteratively approach a local optimum

3. Perturbate a solution s1 to another solution s2 such
that an iterative method defined above will not allow
us to go from s1 to s2.

4. Restart the search to explore different areas of the so-
lution space.

To perform these methods, a user running an ILS algorithm
for solving a combinatorial problem will have to decide pa-
rameters for these methods. These parameters influence the
search pattern of ILS. For example, which strategy to use for
iteration, how far each perturbation should be, how many
times to restart the search and how to construct the initial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAAI American Association for Artificial Intelligence
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

solution. Because of the NP-hardness of these combinato-
rial problems, none of the heuristic or parameter settings is
generalizable to all instances of combinatorial problems.

1.3 Automatic Parameter Tuning
As described earlier, there is no single parameter setting

that works well for all instances of a combinatorial prob-
lem. The user who utilizes heuristics will run ILS several
times while varying the parameters to observe the best pa-
rameter settings. Such efforts are laborious and Automatic
Parameter Tuning (APT) approaches have been proposed
to automate the tuning of such parameters [1]. The APT
algorithm involves running the set of instances with some
initial parameter settings. The output from an APT al-
gorithm is used as a feedback to re-adjust the parameters.
Several runs of such tuning occurs and the APT algorithm
then determines the best set of parameter settings.

One shortcoming of APT is that it produces a single set
of parameter settings for all given instances. Clearly this is
an overly optimistic assumption because problem instances
differ from one another, hence, parameter settings which
work for some instances may not work for others. Earlier
work had proposed that instances can be divided into clus-
ters where intra-cluster instances have high similarity while
inter-cluster instances have low similarity [3]. APT may
then be applied to each cluster independently of other clus-
ters.

1.4 Generic Instance-Based Clustering
In general, we want to use a clustering approach for APT

such that the clustering is generalizable to all combinatorial
problems. That is given an algorithm A where A can be any
ILS algorithm for combinatorial problem, and a problem in-
stance I where I is a combinatorial problem that A solves,
the clustering technique should apply to all of such A and
I. Such generalized clustering approach had been proposed
[7]. The proposed idea in [7] uses the search trajectory pat-
terns of an algorithm A to produce a sequence that acts as
features of an instance I. Since the sequence is produced
by a generalized ILS algorithm A and not from the instance
itself, then any combinatorial problem that uses algorithm
A is suitable for the APT approach we described here. The
description of search trajectory is given in [4].

A clustering algorithm for sequences requires the mea-
surement of distance between two sequences. The sequence
distance metric used in [7] is highly dependent on the length
of the sequence. However, the length of the sequence is not
a representative feature of the problem instance. Hence, we
propose to use a Markov Mixture Model that is able to clus-

ter sequences without much consideration for their length.

1.5 Overview of Automatic Parameter Tuning
using Clustering

We summarized the APT method as follows.

1. For existing N problem instances I, run algorithm
A to obtain their search trajectory sequences S =
(s1, s2, . . . , sN) using Table 1.

2. Cluster the sequences S into K clusters for which K
is to be determined automatically by the clustering
algorithm.

3. For each cluster k, run CALIBRA to determine a suit-
able set of parameters.

4. Subsequently for any arbitrary instance i that does
not belong to the original N problem instances, run
algorithm A to obtain sequence si.

5. Assign a cluster k to si and use the parameter settings
determined by CALIBRA earlier for cluster k to solve
i.

Table 1: Position Types of Solution
Position Type Symbol < = >
SLMIN (strict local min) S + - -
LMIN (local min) M + + -
IPLat (interior plateau) I - + -
SLOPE P + - +
LEDGE L + + +
LMAX (local max) X - + +
SLMAX (strict local max) A - - +

1.5.1 Example
Suppose we have the following functions f1(x), f2(x) and

f3(x) as shown in Figures 1(a), 1(b) and 1(c). Since the
functions are not convex, finding the minimum value of the
functions is NP-hard. We can use an algorithm A to search
for the optimal values and solution of the functions. From
the figures, f1(x) and f2(x) share more similarities com-
pared to f3(x). Hence, we hypothesize that the parameters
for algorithm A should use similar values for solving f1(x)
and f2(x) while f3(x) should use another set of parameters.
i.e. f1(x) and f2(x) belongs to the same cluster of problem
instance and f3(x) is in a separate cluster.

In order to express the pattern of the sequences in a com-
puter recognizable form, we use the search positions in Ta-
ble 1 returned by algorithm A. Figures 2(a), 2(b) and 2(c)
shows how we reduce the problem instances into sequences.
Notice that in the sequence of f3(x) the state after a lo-
cal min/max is SLOPE (P). This is an indication of how
different f3(x) is from f1(x) and f2(x).

We do not restrict this method only to finding minimum
points on functions. The method is generalizable to any
combinatorial problem if algorithm A is able to generate
these states. In general, it is not difficult to obtain such
sequences from A.

(a) f1(x)

(b) f2(x)

(c) f3(x)

Figure 1: Example of Instances

S

X

A

A

A

S

S

S
S

A

X X

X

M

M
M

X

S X A M S X X A M S X A M S A S X

(a) Sequence of f1(x)

A
A

A A

A

A

S

S

S
S

S

S

M

M

M

X

X

X

P

A M S A S X A M S P A S X A M S X A S

(b) Sequence of f2(x)

A

A

A

S

S

P

P
P

P

P

P

P

P

P

P

P

S

A P P S P P P P A P S P A P P P S

(c) Sequence of f3(x)

Figure 2: Example of Instances reduced to Se-
quences

1.6 Clustering using Bayesian Networks and
Markov Process

From here onwards, we will describe the Finite Markov
Mixture Model for sequence clustering. The closely related
Hidden Markov Model is already in used in Bioinformatics
for DNA sequence clustering [11]. Markov Model is a spe-
cial case of directed graphical models, hence, it is a form
of bayesian network. We will show detailed equations re-
garding the approximate inference procedure. Because there
is no domain expert to inform us about how the sequences
should be clustered, hence, we do not have prior information
about the conditional probabilities of the bayesian network.
We will have to learn the conditional probability tables from
the sequence data which is known as parameter learning.
Parameter learning is often perform together with proba-
bilistic inference. My description here extends the lecture of
Markov Decision Process and Bayesian Network.

Infact, the model described here represents the current
state of the art in Statistical Machine Learning. The descrip-
tion on Finite Markov Mixture Model proceed as follows, we
first explain the basic Markov Model. Then we show that
Markov Model can be generalized by Finite Markov Mixture
Model [6].

For a brief overview of how the entire algorithm works,
readers may want to skip the derivations and skip to the
Appendix.

2. MARKOV MODEL

N

sn,1 sn,2 sn,3 sn,M

B Aβ α

Figure 3: Markov Model

Refer to Figure 3 for a graphical representation of Markov
Model. The shaded circles represent observed random vari-
ables while unshaded circles represent latent variables that
we intend to learn from data. The rectangular box encapsu-
lates N repetitions of each sequence sn. The directed edges
represent causal relationships.

2.1 Basics
Suppose we have a list of N sequences S = (s1, . . . , sN).

Each sequence sn of length M is a string of W discrete states.
We let sn,m ∈ {1, 2, . . . , W} denote the state at the mth

position in sequence sn. Using the markov assumption, the
next state sn,m+1 depends only on sn,m and state transition
probabilities [5]. That is we can state that,

P (sn,m+1|sn,m, sn,m−1, . . . , sn,1, A, B) = P (sn,m+1|sn,m, A)

where A is the state transition probabilities matrix.
We can define a markov model with two set of parame-

ters. The initial state probability vector B ∈ RW and the
state transition probability matrix A ∈ RW×W. Formally,

the markov model can be described as follows,

P (sn,1 = i|B) = bi (1)

P (sn,m+1 = j|sn,m = i, A) = ai,j (2)

where 1 ≤ i ≤ j ≤ W , bi is the ith element in B and
ai,j is the (ith, jth) element in A. Equation 1 represents
the probability that a sequence sn has state i as the initial
state. Equation 2 represents the probability that a sequence
sn with state i in the mth position will move to state j in
the m + 1th position.

2.2 Parameter Learning
Now that we have a basic idea of markov model, we will

now investigate how to obtain the values of B and A from a
list of N sequences S. Before showing the bayesian method
of learning these parameters, we will like to indicate that
learning B and A is a numerical optimization problem. Sup-
pose the values in B and A compresses our knowledge of all
these sequences. We can specify the sequences S as follows,

P (s1, . . . , sN |B, A) =

N∏
n=1

P (sn|B, A) (3)

=

N∏
n=1

P (sn,1|B)

M∏
m=1

P (sn,m+1|sn,m, A)

(4)

Traditional numerical optimization techniques can obtain B
and A using first order differentiation. However, to lay the
ground work for nonparametric bayesian statistics, we will
show the bayesian method of optimization.

We will approximate B = (b1, b2, . . . , bW) using a dirichlet
distribution with hyper-parameters β = (β1, β2, . . . , βW).

(b1, . . . , bW) ∼ Dir(β1, . . . , βW) (5)

P (b1, . . . , bW |β1, . . . , βW) ∝
W∏

i=1

bβi−1
i (6)

E(bi|β1, . . . , βW) =
βi∑W

j=1 βj

(7)

Equation 5 is the notation for denoting that B follows a
dirichlet distribution. Equation 6 is the probability den-
sity function for dirichlet distribution. Equation 7 is the
expected value for each parameter of the dirichlet distribu-
tion.

We will now show how to learn (b1, . . . , bW) from the first
element of the N sequences. Suppose we observe the first
element of sequences S and decide to update our belief for
(b1, . . . , bW).

P (b1, . . . , bW |s1,1, . . . , sN,1, β1, . . . , βW) (8)

=
P (s1,1, . . . , sN,1|B)P (B|β)

P (s1,1, . . . , sN,1)
(9)

∝ P (b1, . . . , bW |β1, . . . , βW)

N∏
n=1

P (sn,1|b1, . . . , bW) (10)

∝ P (b1, . . . , bW |β1, . . . , βW)

W∏
i=1

bci
i (11)

∝
W∏

i=1

bci+βi−1
i (12)

where ci is the number of times state i appear as first element
of sequences S. Equation 8 denotes the result of updating B
given the sequences S. Equation 9 is a result of Bayes The-
orem. Equation 10 replaces the denominator of Equation 9
with a normalizing constant. Equation 11 is the result of
replacing P (sn,1|B) using Equation 1. Equation 12 replaces
P (B|β) using Equation 6. Note that Equation 12 has the
same form as Equation 6, this indicates that updating such
distributions are simple counting operations.

We will now show how to learn each row of the transi-
tion matrix A. Suppose each row Ai of the matrix A is
approximated using a dirichlet distribution. The formula-
tion for parameter learning is very much similar to learning
B. Hence, we will just provide the final parameter update
equation.

Ai ∼ Dir(αi,1, . . . , αi,W)

P (Ai|αi) ∝
W∏

j=1

a
αi,j−1

i,j

P (Ai|S, αi) =
P (S|Ai)P (Ai|αi)

P (S)

∝ P (Ai|αi)

N∏
n=1

M∏
m=1

P (sn,m+1|sn,m = i, Ai)

∝
W∏

j=1

a
di,j+αi,j−1

i,j

where di,j is the number of times state j appear after state
i. Note that the updating of Ai is again a simple counting
operation.

3. MARKOV MIXTURE MODEL

K

K

B A

N

sn,1 sn,2 sn,3 sn,M

zn,1

β α

π

θ

zn,2 zn,3 zn,M

Figure 4: Finite Markov Model

Refer to Figure 4 for a graphical representation of Finite
Markov Mixture Model. A zn,m is introduced as a latent
variable for each element of a sequence sn,m to denote the
cluster sn,m belongs to. Vector B and Matrix A now has
rectangular boxes around it to denote that there are now K
vectors of B and K matrices of A.

3.1 Generalization of Markov Model
Markov Mixture Model is a generalization of Markov Model.

We show that using mixture models, we can divide the se-
quences S into K number of clusters. The sequences that
have been allocated to a cluster k have high similarity within
the cluster and low similarity to sequences in other clusters.

Here we state that there are K initial state probability
matrices Bk ∈ RW and K transition state probability ma-
trices Ak ∈ RW×W. We let zn,m ∈ {1, 2, . . . , K} denote the
cluster that sequence element sn,m belongs. More formally,
we can express the Markov Mixture Model as follows,

P (zn,m = k|πn) = πn,k (13)

K∑

k=1

πn,k = 1 (14)

P (sn,1 = i|B, zn,1 = k) = bk,i (15)

P (sn,m+1 = j|sn,m = i, A, zn,m+1 = k) = ak,i,j (16)

Equation 13 indicates the probability of sequence element
sn,m belonging to cluster k. Equation 14 shows the conse-
quence of probability, which sums to 1 in total. Equation
15 indicates which initial state probability vector we should
use given that element sn,m belongs to cluster k. Equa-
tion 16 indicates which transition state probability matrix
we should use given that sequence sn,m belongs to cluster k.

However, we do not know the value of each zn,m, we do
not know which cluster element sn,m belongs to. Hence, the
model can be rewritten as follows,

P (sn,1 = i|B, πn)

=

K∑

k=1

P (sn,1 = i, zn,1 = k|B, πn) (17)

=

K∑

k=1

P (sn,1 = i|B, zn,1 = k)P (zn,1 = k|πn) (18)

=

K∑

k=1

bk,i πn,k (19)

Equation 17 is the result of the law of total probability.
Equation 18 is a consequence of Bayes Theorem.

And similarly,

P (sn,m+1 = j|sn,m = i, A) =

K∑

k=1

ak,i,jπk

Suppose K = 1, then the Markov Mixture Model reduces
back to the original Markov Model we discussed earlier.

3.2 Parameter Learning
Suppose we know the value of zn,m for each sn,m, then

the parameter update equations are similar to the original
markov model. However, we do not know the value of zn,m

for each sn,m. Hence, we use Gibbs Sampling to infer the
value of zn,m for each sn,m. Before introducing Gibbs Sam-
pling, we will first like to show that we approximate the

distribution of πn using a symmetric dirichlet distribution,

(πn,1, . . . , πn,K) ∼ Dir(θ) (20)

P (zn,m|π1, . . . , πK) ∝
K∏

k=1

π
θ/K−1
k (21)

Note that there is only a single hyper-parameter θ instead of
one hyperparameter for each dimension of the distribution.
Similarly, the initial state vectors and transition matrices
also follows symmetric dirichlet distributions.

A ∼ Dir(α)

B ∼ Dir(β)

3.3 Inference using Gibbs Sampling
Gibbs Sampling is an approximate inference technique

for sampling from joint density distributions. For example,
suppose we want to sample from distribution of such form
P (x, y, z). We can do the following, assume we have initial
values of x, y and z. We sample from P (x|y, z) then use the
new value of x to sample P (y|x, z) then use new value of y
to sample P (z|x, y). Repeating such sampling forms an it-
erative markov chain and such sampling technique is known
as Gibbs Sampling. Casella gives a very good introduction
and explanation of why such technique works [2].

Gibbs Sampling is infact a statistical search algorithm
which runs infinitely long to achieve a distribution that is
near to the actual distribution. For ease of computation,
we fix θ, β and α as R constant parameter values. There
are ways to automatically decide these values, thus, fulfiling
the automatic parameter learning. What we really want to
infer here are the zn,m values. We want to form the Gibbs
Sampler in this manner,

P (z1,1 = k|z1,2, . . . , z1,M , . . . , zN,M)

. . .

P (z1,M = k|z1,1, . . . , z1,M−1, . . . , zN,M)

P (z2,1 = k|z1,1, . . . , z1,M , . . . , zN,M)

. . .

P (z2,M = k|z1,1, . . . , z1,M , . . . , zN,M)

. . .

P (zN,M = k|z1,1, . . . , z1,M , . . . , zN,M)

Putting the Gibbs Sampling concept and writing it formally
in the context of our sequence clustering here,

P (zn,1 = k|zn,−1, S, β, α, θ)

∝
[

ck,i + β
W∑

i ck,i − 1 + β

] [
en,k + θ

K∑
k en,k − 1 + θ

]
(22)

P (zn,m = k|zn,−m, S, β, α, θ)

∝
[

dk,i,j + α
W∑

j dk,i,j − 1 + α

] [
en,k + θ

K∑
k en,k − 1 + θ

]
(23)

zn,−m represents the set of cluster assignments to all M ele-
ments of N sequences except for the m element of sequence
n. Equation 23 (22) is the equation to use to decide which
value of k to allocate to sn,m(sn,1) where m ≥ 2 for a par-
ticular iteration.

3.4 Deciding the Clusters Probability
Finally, after sampling for the Z values, we will like to

know what are the probabilities that a sequence n belongs
to a cluster k. From Figure 4, the cluster probabilities are
summarized by the variable πn for each sn. The distribution
πn may now be updated by the following posterior dirichlet
distribution,

P (πn|zn,1, . . . , zn,M , θ) ∝ P (zn,1, . . . , zn,M |πn)P (πn|θ)

(24)

∝
K∏

k=1

π
en,k+θ/K−1

k (25)

3.5 Optimizing the Hyper-Parameters Theta,
Alpha and Beta

From the start of the Markov Model description, we have
not mentioned how to decide the values of θ, α and β. We
have always assumed that they are constants. Infact, they
are not constants and their values should depend on the
data we observed. This is the crucial point of nonpara-
metric statistics. We shall show how to decide these values
automatically. First we form the following equation which
represents the likelihood of cluster assignments,

P (Z|θ) =

N∏
n=1

M∏
m=1

P (zn,m|θ) (26)

=

N∏
n=1

∫ M∏
m=1

P (zn,m, πn|θ) dπn (27)

=

N∏
n=1

∫ M∏
m=1

P (zn,m|πn)P (πn|θ) dπn (28)

∝
N∏

n=1

∫ K∏

k=1

π
en,k+ θ

K
n,k (29)

∝
N∏

n=1

[
Γ(θ)∏K

k=1 Γ(θ/K)

∏K
k=1 Γ(en,k + θ

K
)

Γ(θ +
∑K

k=1 en,k)

]
(30)

∝
N∏

n=1

[
Γ(θ)

Γ(θ +
∑K

k=1 en,k)

K∏

k=1

Γ(en,k + θ
K

)

Γ(θ/K)

]
(31)

The equation only has one unknown θ. The θ value should
then maximize the equation. There are many ways to max-
imize such a function. Newton Raphson is one of them, but
we shall show a Fixed Point Iteration Method [9]. The Fixed
Point Iteration Method places a lower bound on the function
that we want to maximize. According to Minka [9], these
bounds are obtained from Milan Merkle’s work [8]. We do
not understand this work yet, but we hope to understand it
one day.

Using the following lower bounds,

Γ(θ)

Γ
(
θ +

∑K
k=1 en,k

) ≥ dn e(θold−θ)bn (32)

bn = Ψ

(
θold +

K∑

k=1

en,k

)
−Ψ

(
θold

)
(33)

dn =
Γ

(
θold

)

Γ
(
θold +

∑K
k=1 en,k

) (34)

Γ (en,k + θ/K)

Γ (θ/K)
≥ cn,k

(
θ

K

)an,k

(35)

cn,k =
Γ

(
en,k + θold

K

)

Γ
(

θold

K

)
(

θold

K

)−an,k

(36)

an,k =

(
θold

K

) (
Ψ

(
en,k + θold/K

)
−Ψ

(
θold/K

))
(37)

Substitute the bounds above into Equation 31,

P (Z|θ) ≥
N∏

n=1

[
dn e(θold−θ)bn

K∏

k=1

[cn,k (θ/K)an,k]

]

(38)

log P (Z|θ) ≥
N∑

n=1

log

[
dn e(θold−θ)bn

K∏

k=1

[cn,k (θ/K)an,k]

]

(39)

≥
N∑

n=1

[
log dn + bn

(
θold − θ

)
+

K∑

k=1

[
log cn,k + an,k log

θ

K

]]

(40)

Now to maximize the RHS, differentiate with respect to θ

d

dθ
log P (Z|θ) ≥

N∑
n=1

[
− bn +

K∑

k=1

an,k

θ

]
(41)

≥
∑N

n=1(
∑K

k=1 an,k − bnθ)

θ
(42)

Equate the RHS to 0 and solve for θ.

θ =

∑N
n=1

∑K
k=1 an,k∑N

n=1 bn

(43)

=

∑N
n=1

∑K
k=1

(
θold

K

)(
Ψ(en,k + θold/K)−Ψ(θold/K)

)

∑N
n=1

[
Ψ(θold +

∑K
k=1 en,k)−Ψ(θold)

]

(44)

=
θold ∑N

n=1

∑K
k=1

(
Ψ(en,k + θold/K)−Ψ(θold/K)

)

K
[
−NΨ(θold) +

∑N
n=1 Ψ(θold +

∑K
k=1 en,k)

]

(45)

=
θold

[
−NKΨ(θold/K) +

∑N
n=1

∑K
k=1 Ψ(en,k + θold/K)

]

K
[
−NΨ(θold) +

∑N
n=1 Ψ(θold +

∑K
k=1 en,k)

]

(46)

Run Equation 46 for some arbitrary iterations. we will skip
the derivations for α and β, basically, it follows the same
principle. The following shows the updates for α and β.

β =
βold

(
−KWΨ(βold

W
) +

∑K
k=1

∑W
i=1 Ψ(ck,i + βold

W
)
)

W
(
−KΨ(βold) +

∑K
k=1 Ψ(

∑W
i=1 ck,i + βold)

)

(47)

α =
αold

(
−KW 2Ψ(αold

W
) +

∑K,W,W
k,i,j Ψ(dk,i,j + αold

W
)
)

W
(
−KWΨ(αold) +

∑K,W
k,i Ψ(

∑W
i=1 dk,i,j + αold)

)

(48)

The appendix summarizes all of the clustering algorithm
as discussed.

4. EXPERIMENTAL RESULTS
We use our clustering results for performing the Auto-

matic Parameter Tuning as described in Section 1.5. We
compare the TSP path results with [7] which uses the AGNES
clustering algorithm. Table 4 shows the comparison of clus-
ter assignment for training instances. Table 4 shows the
comparison of cluster assignment for testing instances. The
cluster assignments show little differences.

Table 4 shows the comparison of our results. The left
most column represents the name of the Symmetric TSP
instance from TSPLIB. The other two columns show the
average differences between the best TSP path length and
path length found by our algorithms. The results show that
there is no significant difference between our model with
Agnes.

Markov 0 Agnes 0 Markov 1 Agnes 1 Markov 2 Agnes 2
a280 fl3795 fl3795 pr76 pr76

eil101 eil101 fl1400 fl1400 pr152 pr152
eil51 eil51 p654 p654 kroa100 kroa100
eil76 eil76 u2319 u2319 pr136 pr136
gil262 gil262 pr2392 pr2392 kroe100 kroe100

pr226 d1655 d1655 krob100 krob100
rat575 d2103 d2103 krob150 krob150
rat783 u2152 u2152 kroc100 kroc100

st70 st70 rat783 kroa150 kroa150
pcb1173 pcb1173 berlin52 berlin52
fl1577 fl1577 kroa200 kroa200
d657 d657 rd100 rd100

nrw1379 nrw1379 lin105 lin105
u1432 u1432 lin318 lin318

vm1748 vm1748 u159 u159
rat575 pr1002
rl1323 rl1323 vm1084
rl1889 rl1889 rat99 rat99
pr299 d198 d198
rl1304 rl1304 linhp318 linhp318
d493 d493 krob200
u1060 u1060 ch130

vm1084 ch150
pcb442 rat195
pr1002 ts225

pr299
pr107

Table 2: Cluster Assignment for Training Instances

Markov 1 Agnes 1 Markov 2 Agnes 2
d1291 d1291 bier127 bier127
fl417 fl417 krod100 kroD100

pcb3038 pcb3038 pr124 pr124
u1817 u1817 pr144 pr144
u574 u574 pr264 pr264
u724 u724 pr439 pr439

tsp225 rd400 rd400
tsp225

Table 3: Cluster Assignment for Testing Instances

Instance Markov Mixture Model AGNES
d1291 6.49 5.57
fl417 4.01 3.27

pcb3038 6.72 6.45
u1817 6.98 6.39
u574 5.67 5.70
u724 5.34 5.45

tsp225 3.34 4.00
bier127 2.34 2.42
krod100 2.34 3.12
pr124 1.42 1.11
pr144 0.66 1.04
pr264 7.38 8.98
pr439 5.27 4.48
rd400 4.36 4.55

Average 4.45 4.47

Table 4: Markov Mixture Model vs Agnes

5. DISCUSSION OF OTHER APPLICATIONS
FOR DECISION SUPPORT

We have presented the Finite Markov Mixture Model in
the previous sections. We have shown that Markov Mix-
ture Models can be used for lustering sequences. However,
Markov Mixture Models (MMM) have applications that ex-
tends beyond clustering. MMM is infact a more fine-grained
generalization of Markov Models. Using MMM, we can ob-
serve sequences of events that occur in real world systems
to predict for,

1. The occurence of future events.

2. When will certain state events occur.

By knowing what will happen in the future, will give us
knowledge about making decisions in the present. Combin-
ing this work and other research of Artificial Intelligence,
we are now one step closer to making real world Analytical
Systems.

6. ACKNOWLEDGMENTS
The author(s) will like to thank Prof Hoong Chuin Lau

and Lindawati for providing the ideas and help to making
this project possible.

7. REFERENCES
[1] B. Adenso-Diaz and M. Laguna. Fine-tuning of

algorithms using fractional experimental designs and
local search. Oper. Res., 54(1):99–114, 2006.

[2] G. Casella and E. I. George. Explaining the gibbs
sampler. The American Statistician, 46(3):167–174,
1992.

[3] F. X. H. C. Lau and S. Halim. Enhancing the speed
and accuracy of automated parameter tuning in
heuristic design. 8th Metaheuristics International
Conference, 2009.

[4] H. Hoos and T. Stutzle. Stochastic Local Search:
Foundation and Application. Morgan Kaufmann, 2004.

[5] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

[6] Y. Liang and A. Kelemen. Bayesian finite markov
mixture model for temporal multi tissue polygenic
patterns. Biometrical, 51:56–69, 2009.

[7] D. L. Lindawati, H. C. Lau. Generic instance-based
automated parameter tuning via search trajectory
similarity clustering. To appear European Conference
on Artificial Intelligence, 2010.

[8] M. Merkle. Conditions for convexity of a derivative
and applications to the gamma and digamma
function. Ser. MATH. INFORM, 16:13–20, 2001.

[9] T. P. Minka. Estimating a dirichlet distribution. 2003.

[10] H. Ramalhinho-Lourenco, O. C. Martin, and
T. Stutzle. Iterated local search. Economics Working
Papers 513, Department of Economics and Business,
Universitat Pompeu Fabra, Nov. 2000.

[11] P. Smyth. Clustering sequences with hidden markov
models. In Advances in Neural Information Processing
Systems, pages 648–654. MIT Press, 1997.

APPENDIX
A. OVERVIEW OF THE CLUSTERING AL-

GORITHM

Algorithm 1
Input: N TSP Training instances {G1, . . . ,GN}
Input: K number of clusters
Output: Cluster membership {π1, . . . , πN}
{s1, . . . , sN} ← ILS({G1, . . . ,GN})
Each sequence sn is an ordered set {sn,1, . . . , sn,M}.
Each element sn,m in sequence sn has states as shown in
Table 1.
Initialize z[N][M], c[K][7], d[K][7][7], e[N][K]
Initialize hyperparameters θ, α, β
for n ← 1 to N do

z[n][1] ← Randomly Assign 1 to K
e[n][z[n][1]] + +
c[z[n][1]][s[n][1]] + +
M ← length(s[n])
for m ← 2 to M do

z[n][m] ← Randomly Assign 1 to K
e[n][z[n][m]] + +
d[z[n][m]][s[n][m− 1]][s[n][m]] + +

end for
end for
while not converge do

for n ← 1 to N do
e[n][z[n][1]]−−
c[z[n][1]][s[n][1]]−−
z[n][1] ← Sample using Equation 22
e[n][z[n][1]] + +
c[z[n][1]][s[n][1]] + +
M ← length(s[n])
for m ← 2 to M do

e[n][z[n][m]]−−
d[z[n][m]][s[n][m− 1]][s[n][m]]−−
z[n][1] ← Sample using Equation 23
e[n][z[n][1]] + +
d[z[n][m]][s[n][m− 1]][s[n][m]] + +

end for
end for
θ ← Update using Equation 46
β ← Update using Equation 47
α ← Update using Equation 48

end while
Finally, evaluate πn using Equation 25

Algorithm 2
Input: N TSP Testing instances {G1, . . . ,GN}
Input: c[K][7], d[K][7][7] from previous algorithm
Output: Cluster membership {π1, . . . , πN}
{s1, . . . , sN} ← ILS({G1, . . . ,GN})
Initialize z[N][M], e[N][K]
for n ← 1 to N do

M ← length(s[n])
for m ← 1 to M do

z[n][m] ← Randomly Assign 1 to K
e[n][z[n][m]] + +

end for
end for
while not converge do

for n ← 1 to N do
e[n][z[n][1]]−−
z[n][1] ← Sample using Equation 22
e[n][z[n][1]] + +
M ← length(s[n])
for m ← 2 to M do

e[n][z[n][m]]−−
z[n][1] ← Sample using Equation 23
e[n][z[n][1]] + +

end for
end for

end while
Finally, evaluate πn using Equation 25

